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SUMMARY. Antimicrobial resistance (AMR) is an important issue for both wildlife conservation and public health. The purpose
of this study was to screen for AMR in fecal bacteria isolated from northern bobwhite (Colinus virginianus), a species that is an
ecologically and economically important natural resource in the southern United States. The antimicrobial susceptibility profiles of
45 Escherichia coli isolates, 20 Enterococcus faecalis isolates, and 10 Enterococcus faecium isolates were determined using the
SensititerTM microbroth dilution minimum inhibitory concentration (MIC) plate, AVIAN1F. Overall, E. coli isolates had high MIC
values for the following classes of antimicrobials: aminocoumarins, beta-lactams, lincosamides, macrolides, florfenicol, and
sulfonamides. Enterococcus faecalis and E. faecium isolates had high MICs for aminocyclitols, aminoglycosides, beta-lactams,
lincosamides, and sulfonamides. Enterococcus faecalis isolates also showed high MICs for aminocoumarins, while E. faecium isolates
had high MICs for trimethoprim/sulfamethoxazole and tetracycline. Based on available veterinary interpretive criteria, 15% and 33%
of E. coli isolates were resistant to sulphathiazole and sulphadimethoxine, respectively. Intermediate susceptibility to florfenicol was
seen with 17.8% of E. coli isolates. Twenty percent of E. faecalis and 80% of E. faecium isolates were resistant to high-concentration
streptomycin. One third of E. faecalis and 70% of E. faecium isolates were intermediately susceptible to erythromycin. Ten percent of
E. faecium isolates were resistant to tetracycline and oxytetracycline. A comparison of available MIC suggests that AMR in wild
bobwhite is less severe than in domestic poultry. Further investigation is needed to determine the source of AMR in wild bobwhite.

RESUMEN. Nota de investigación- Estudio piloto de la resistencia a los antimicrobianos en codornices cotuı́s (Colinus virginianus)
del Norte.

La resistencia antimicrobiana (AMR) es un tema importante tanto para la conservación de la vida silvestre como para la salud
pública. El propósito de este estudio fue la determinación de la resistencia antimicrobiana en bacterias fecales aisladas de codornices
cotuı́s (Colinus virginianus) del Norte, una especie que es un recurso natural ecológicamente y económicamente importante en el sur
de los Estados Unidos. Se determinaron los perfiles de susceptibilidad antimicrobiana de 45 aislados de Escherichia coli, de 20 aislados
de Enterococcus faecalis y de 10 aislados de Enterococcus faecium utilizando placas SensititerTM con código AVIAN1F, para determinar
la concentración mı́nima inhibitoria (MIC) mediante dilución en cultivo. En general, los aislamientos de E. coli presentaron valores
de concentraciones mı́nimas inhibitorias altos para las siguientes clases de antimicrobianos: aminocumarinas, beta-lactamicos,
lincosamidas, macrólidos, florfenicol y sulfonamidas. Los aislados de E. faecalis y E. faecium mostraron valores altos de
concentraciones mı́nimas inhibitorias para los aminociclitoles, aminoglucósidos, beta-lactamicos, lincosamidas y sulfonamidas. Los
aislados de Enterococcus faecalis también mostraron valores altos de concentraciones mı́nimas inhibitorias para las aminocumarinas,
mientras que los aislados de E. faecium tuvieron altas concentraciones mı́nimas inhibitorias para la trimetoprima/sulfametoxazol y la
tetraciclina. Basándose en los criterios de interpretación veterinaria disponibles, el 15% y el 33% de los aislamientos de E. coli fueron
resistentes al sulfatiazol y a la sulfadimetoxina, respectivamente. Se observó susceptibilidad intermedia para el florfenicol con 17.8%
de los aislamientos de E. coli. El 20% de los aislamientos de E. faecalis y el 80% de los aislamientos de E. faecium aislados fueron
resistentes a la estreptomicina de alta concentración. Un tercio de los aislados de E. faecalis y el 70% de los aislamientos de E. faecium
aislados mostraron una susceptibilidad intermedia a la eritromicina. El 10% de los aislamientos de E. faecium fueron resistentes a la
tetraciclina y a la oxitetraciclina. Una comparación de las concentraciones mı́nimas inhibitorias disponibles sugiere que la resistencia
antimicrobiana en las codornices cotuı́s silvestres es menos severa que en las aves domésticas. Se necesitan más investigaciones para
determinar la fuente de resistencia antimicrobiana en las especie codornices cotuı́s silvestres.
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Abbreviations: AMOX ¼ amoxicillin; AMR ¼ antimicrobial resistance; CLI ¼ clindamycin; CLSI ¼ Clinical Laboratory
Standards Institute; ENRO ¼ enrofloxacin; ERY ¼ erythromycin; FFN ¼ florfenicol; GEN ¼ gentamicin; MIC ¼ minimum
inhibitory concentration; NARMS ¼ National Antimicrobial Resistance Monitoring System for Enteric Bacteria; NEO ¼
neomycin; NOV ¼ novobiocin; OXY¼ oxytetracycline; PEN¼ penicillin; SDM¼ sulphadimethoxine; SPE¼ spectinomycin;
STR ¼ streptomycin; STZ ¼ sulphathiazole; SXT ¼ trimethoprim/sulfamethoxazole; TET ¼ tetracycline; TYLT ¼ tylosin
tartrate; XNL ¼ ceftiofur

The northern bobwhite (Colinus virginianus) is an ecologically

and economically important natural resource in the southern United
States (30). Bobwhite populations have been declining since the late

1970s, which threatens the extinction of this species and the long-DCorresponding author. E-mail: zhangshup@missouri.edu
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treasured tradition of quail hunting, especially in southern states of
the United States (28). Some private farms and plantations release
pen-reared bobwhite birds to the wild in an attempt to increase the
breeding populations of wild birds. One study shows about 40% of
released birds can survive the initially heavy mortality and about
25% can survive to the end of the hunting season (9). This raises the
question of whether pen-reared birds share their intestinal microbes,
some of which could be resistant to antimicrobial agents commonly
used in avian medicine. Another concern is whether human activities
introduce antimicrobial resistance (AMR) to the habitats of wild
bobwhite populations or bobwhite would serve as an AMR reservoir
or transmission vehicle.

Antimicrobial resistance is an increasingly serious threat to global
public health and animal health (4,31). Each year in the United
States, more than 2 million people become infected with AMR
bacteria, and about 23,000 deaths occur as a direct result of these
infections (5). It is believed that the transfer of resistant bacteria and
resistance genes from animal to humans contribute to the rapid
emergence of AMR in human health care (15,29). Since the first
report of antimicrobial resistant bacteria originating from wild birds
(24), AMR has been detected in various bird species, including
waterfowl, predatory, and scavenger birds and even wild birds in the
Arctic (16,17,19,25,26). The present study was undertaken as part
of a larger project named ‘‘Operation Idiopathic Decline,’’ which
aimed to understand the various health issues of wild bobwhite
populations in the Rolling Plains ecoregion of Texas and Oklahoma,
USA (27). The purpose of the present pilot study was to determine
the prevalence and profile of AMR in fecal indicator bacteria isolated
from the intestinal contents of wild-caught bobwhite birds from
western Texas and western Oklahoma. The data will be used to
direct future study on the health and management of wild bobwhite
populations and impact of releasing pen-reared birds on the health
of wild populations.

MATERIALS AND METHODS

Ethical consideration. Animal and tissue uses were approved by the
Institutional Animal Care and Use Committees of Texas A&M
University (IACUC 2011-193) and Texas Tech University (IACUC
11049-07). Trapping practices were conducted under the auspices of a
Texas Parks & Wildlife Department Scientific Collector’s permit.

Sample collection and bacterial culture. Sample collection and
processing were completed by the Central Specimen Receiving,
Processing, and Distribution Laboratory of the Institute of Environ-
mental and Human Health, Texas Tech University. For the original
‘‘Operation Idiopathic Decline’’ project, a total of 2,615 birds on 33
private ranches and state-owned wildlife management areas were trapped
across the 3 yr of the study. About 590 birds were subjected to
microbiology study. The sampled area was approximately 9 million
hectares in the Rolling Plains ecoregion of Texas and Oklahoma. The
birds were euthanatized, and tissue samples were utilized for various
laboratory testing. All samples were stored at �208C prior to culture.
The contents of ceca and large intestine were sampled with sterile
polyester swabs (Puritan Medical, Guilford, ME, USA) and inoculated
onto Tryptic Soy Agar with 5% Sheep Blood and Columbia Colistin
Nalidixic Acid agar with 5% Sheep Blood and MacConkey agar, and in
Brain Heart Infusion broth. Inoculated Tryptic Soy Agar and Columbia
Colistin Nalidixic Acid agar plates were incubated at 378C in either 5%
CO2, whereas MacConkey agar plates and Brain Heart Infusion broth
were incubated in ambient air followed by daily inspection for 5 days.
After an overnight incubation, broth was inoculated onto agar plates
followed by a 5-day incubation. Presumptive Escherichia coli and

Enterococcus spp. colonies were selected and purified for further
identification and susceptibility testing. Bacterial identification was
conducted using the MALDI Biotyper and supplementary biochemical
characterizations, including oxidase, catalase, urease, and indole test.
One E. coli and one Enterococcus isolate per bird were included in the
subsequent antimicrobial susceptibility study.

Antimicrobial susceptibility testing. The antimicrobial susceptibil-
ity or resistance profile was determined using the SensititerTM

microbroth dilution minimum inhibitory concentration panel, namely,
AVIAN1F (Trek Diagnostic Systems Inc., Westlake, OH). The
antimicrobial susceptibility plate included 18 antibiotics representing
10 different classes: amoxicillin, ceftiofur, clindamycin, enrofloxacin,
erythromycin, florfenicol, gentamicin, neomycin, novobiocin, oxytetra-
cycline, penicillin, spectinomycin, streptomycin, sulphadimethoxine,
sulphathiazole, tetracycline, trimethoprim-sulfamethoxazole, and tylosin
tartrate. Susceptibility assays were carried out according to Clinical
Laboratory Standards Institute (CLSI) guidelines for broth micro-
dilution methods (7,8). E. coli ATTC 25922 and Enterococcus faecalis
ATCC 29212 were used as the quality control strains. The minimum
inhibitory concentration (MIC) was defined as the lowest concentration
of the antimicrobial agent that inhibited visible bacterial growth. MIC50

and MIC90 were determined as the minimum concentrations of an
antimicrobial agent at which the growth of 50% and 90% of isolates
were inhibited, respectively. Veterinary-specific interpretive criteria were
obtained from CLSI and Antimicrobial Therapy in Veterinary
Medicine. Interpretive criteria for high-level streptomycin was obtained
from the National Antimicrobial Resistance Monitoring System for
Enteric Bacteria (NARMS) (6,11).

RESULTS

A total of 45 E. coli, 20 E. faecalis, and 10 Enterococcus faecium
isolates were recovered from 155 quail intestinal contents. The MIC

distribution and susceptibility patterns of E. coli isolates are shown

in Table 1 and Table 2, respectively. Overall, E. coli isolates had high

MIC values for the following classes of antimicrobials: amino-

coumarins, beta-lactams, lincosamides, macrolides, florfenicol, and

sulfonamides. Based on available veterinary interpretive criteria, all

E. coli isolates (100%) were resistant to novobiocin. About 15% and

33% of E. coli isolates were resistant to sulphathiazole and

sulphadimethoxine, respectively. Intermediate susceptibility to

florfenicol was seen with 17.8% of isolates. All E. coli isolates were

susceptible to spectinomycin, aminoglycosides, ceftiofur, enroflox-

acin, tetracycline, and trimethoprim/ sulfamethoxazole.

The MIC distribution and susceptibility pattern of E. faecalis and

E. faecium are shown in Table 3, Table 4, and Table 5, respectively.

Enterococcus faecalis and E. faecium isolates had high MICs for the

following classes of antimicrobials: aminocyclitols, aminoglycosides,

beta-lactams, lincosamides, and sulfonamides. Enterococcus faecalis
isolates also showed high MICs for aminocoumarins while E.
faecium isolates had high MICs for trimethoprim/sulfamethoxazole

and tetracycline. Using available veterinary interpretive criteria, 45%

of E. faecalis isolates were resistant to novobiocin. Twenty percent of

E. faecalis and 80% of E. faecium isolates were resistant to high-

concentration streptomycin, respectively. One third of E. faecalis and

70% of E. faecium isolates were intermediately susceptible to

erythromycin. Ten percent of E. faecium isolates were resistant to

tetracycline and oxytetracycline. All Enterococcus isolates were

susceptible to penicillin and tylosin tartrate. All E. faecalis isolates

were also susceptible to tetracycline, and all E. faecium isolates were

susceptible to novobiocin.
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DISCUSSION

Although AMR occurs naturally through genetic mutation and

acquisition of resistance genes from other bacteria, misuse of

antimicrobials, and poor biosecurity measures can accelerate the

development and spread of AMR (31). Wild birds have been tested

as sentinels for the detection of AMR and zoonotic pathogens

because of their direct contacts with humans, animals, and the

environment (20,21). On the other hand, concerns have been raised

over the role of wild birds in maintaining and spreading AMR and

pathogens (17,25,26). To understand the epidemiology of AMR in

bobwhite populations, we have determined the AMR patterns of E.

coli and Enterococcus spp. isolated from bobwhite intestinal contents.

These bacterial species are commensal organisms that are excreted

into the environment and occasionally cause infections in domestic

and wild animals as well as humans. Due to their wide distribution,

E. coli and Enterococci are frequently used as biological indicators of

fecal pollution in the water and the environment (20,23). In the

United States, the prevalence of AMR E. coli and Enterococci in retail

beef, chicken, and turkey is routinely monitored by NARMS. In the

present study, we utilized a commercial antimicrobial susceptibility

Table 1. MIC (lg/ml) distribution (%) of E. coli isolates (n ¼ 45).

*Antimicrobial agents: SPE, spectinomycin; NOV, novobiocin; GEN, gentamicin; NEO, neomycin; STR, streptomycin; AMOX, amoxicillin;
XNL, ceftiofur; PEN, penicillin; ENRO, enrofloxacin; CLI, clindamycin; FFN, florfenicol; SDM, sulphadimethoxine; STZ, sulphathiazole; SXT,
trimethoprim/sulfamethoxazole; OXY, oxytetracycline; TET, tetracycline; ERY, erythromycin; and TYLT, tylosin tartrate. The shaded areas indicate
the concentrations not tested. Bold numbers indicate that isolates had MIC values greater than the highest concentration tested.

Table 2. Antimicrobial susceptibility pattern of E. coli isolates based on MIC breakpoints for veterinary pathogens.

Class Antimicrobial agents*

Breakpoints

Reference**

% Isolates

S I R S I R

Aminocoumarins NOV �4 8 .16 #2 0.0 0.0 100.0
Aminocyclitols SPE �20 — — #2 100.0 0.0 0.0
Aminoglycosides GEN �2 4 �8 #1 100.0 0.0 0.0

NEO �8 16 .32 #2 100.0 0.0 0.0
STR �32 — �64 #3 100.0 — 0.0

Beta-lactams XNL �2 4 �8 #3 100.0 0.0 0.0
Florfenicols FFN �4 8 �16 #1 82.2 17.8 0.0
Fluoroquinolones ENRO �0.25 0.5–1 �2 #1 100.0 0.0 0.0
Sulfonamides SDM �256 — �512 #1 66.7 — 33.3

STZ �256 — �512 #1 84.4 — 15.6
SXT �2/38 — �4/76 #1 100.0 — 0.0

Tetracyclines OXY �4 8 �16 #1 100.0 0.0 0.0
TET �4 8 �16 #1 100.0 0.0 0.0

*Antimicrobial agents: NOV, novobiocin; SDM, sulphadimethoxine; STZ, sulphathiazole; FFN, florfenicol; SPE, spectinomycin; GEN,
gentamicin; NEO, neomycin; STR, streptomycin; XNL, ceftiofur; ENRO, enrofloxacin; SXT, trimethoprim/sulfamethoxazole; OXY,
oxytetracycline; and TET, tetracycline.

**Breakpoint reference: #1, CLSI VET01S (17); #2, Antimicrobial Therapy in Veterinary Medicine (19); and #3, NARMS (18).
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testing panel (AVIAN1F), which included 18 antibiotics belonging

to 10 drug classes. Many of these antimicrobials are approved for use

in poultry, according to the guidelines of the American Association

of Avian Pathologists and American Veterinary Medical Association.

One exception is enrofloxacin, a fluoroquinolone antibiotic that is

illegal to use in poultry. Some of these antimicrobials are included in

the NARMS panel, such as gentamicin, streptomycin, ceftiofur,

sulfamethoxazole (prior to 2004), and tetracycline.

It was encouraging to see that all bobwhite E. coli isolates were

susceptible to the following antibiotics: florfenicol, aminocyclitols

(spectinomycin), aminoglycosides (gentamicin, neomycin, and

streptomycin), beta-lactams (ceftiofur), fluoroquinolones (enro-

floxacin), sulfonamides, combinations (trimethoprim/sulfameth-

oxazole), and tetracycline (oxytetracycline and tetracycline).

Although all E. coli isolates showed high MICs (equal to or greater

than the highest concentration tested) for clindamycin, penicillin,

erythromycin, and tylosin, it is somewhat expected because

Enterobacteriaceae, including E. coli, are intrinsically resistant to

lincosamides, macrolides, and penicillin (10,13). However,

reduced susceptibility to florfenicol and resistance to sulphathiazole

and sulphadimethoxine were alarming. Florfenicol has been used

to treat E. coli airsacculitis, and sulfonamides are routinely used as

prophylactic or therapeutic agents to bacterial infections and

coccidiosis in domestic poultry (1,11). Sulphathiazole was included

in NARMS surveillance in 2003 and 2004 and then replaced by

sulfisoxazole (8). NARMS data indicate that approximately 40% to

50% of E. coli isolates from retail poultry are resistant to

sulphathiazole, figures that are higher than the resistance rate

detected in bobwhite bacteria. Although the origin(s) of quail

AMR is not known, the fact that more isolates were resistant to an

older sulfonamide, sulfathiazole, than sulphadimethoxine suggests

a selection pressure from antibiotic use in veterinary or human

medicine. It is known that Enterococcus spp. have low-level intrinsic

resistance to many clinically useful antimicrobials, such as

sulfonamides, lincosamides, beta-lactams, and low-level aminogly-

cosides (12,22). In the present study, E. faecalis and E. faecium
isolates had high MICs (equal to or greater than the highest

concentrations included) to more than 50% of the antimicrobial

agents tested. It is noteworthy that reduced susceptibility to

erythromycin and resistance to high-concentration streptomycin

were seen with quail enterococci and resistance to tetracycline was

detected in one E. faecium isolate. A comparison of data on

antimicrobials included in both NARMS and the present studies

indicates that the MICs of bobwhite enterococci were lower than

that of the retail poultry isolates. For example, the MIC90 of

streptomycin against retail chicken E. faecalis isolates was 2048 lg/

ml, whereas MIC90 for quail isolates was 64 lg/ml (6). The MICs

of erythromycin were equal to or greater than 8 lg/ml in about

35% of retail chicken E. faecalis isolates, while MICs were 1 lg/ml

for 100% of quail isolates (6).

The MIC panel (AVIAN1F) used in the present study includes

most of the antimicrobials recommended for use in poultry by

AAAP-AVMA, but the agents and test concentrations differ from

that of NARMS or other previous studies conducted outside the

United States (14). In addition, many studies of AMR in wild birds

or poultry utilized the disk diffusion method or PCR detection of

resistance genes (2,3,18), which make it impossible to compare the

pattern or trend of AMR in different wild bird species. However,

data from the present study revealed that AMR has already spread to

the wild bobwhite populations in western Texas and western

Oklahoma. It is noteworthy to point out that the study area is not

known for domestic poultry production and has limited releases of

Table 3. MIC (lg/ml) distribution (%) of E. faecalis isolates (n ¼ 20).

*Antimicrobial agents: SPE, spectinomycin; NOV, novobiocin; GEN, gentamicin; NEO, neomycin; STR, streptomycin; AMOX, amoxicillin;
XNL, ceftiofur; PEN, penicillin; ENRO, enrofloxacin; CLI, clindamycin; FFN, florfenicol; SDM, sulphadimethoxine; STZ, sulphathiazole; SXT,
trimethoprim/sulfamethoxazole; OXY, oxytetracycline; TET, tetracycline; ERY, erythromycin; and TYLT, tylosin tartrate. The shaded areas indicate
concentrations not tested. Bold numbers indicate that isolates had MIC values greater than the highest concentration tested.
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pen-reared bobwhite birds. Findings from the present study warrant

additional testing of wild and pen-reared bobwhite birds in different

regions and the appropriate environmental samples to understand

the origin and transmission of AMR in pen-reared and wild

bobwhite populations. It is also important to increase the awareness

of quail AMR to the general public.
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